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Conventions

N = {1, 2, 3, . . .}, N0 = N ∪ {0}. If k < θ ∈ N0, then
Ik,θ = {n ∈ N0 : k ≤ n ≤ θ}
G denotes the group of N -roots of unity in k.

V ∗ := homk(V,k),

The finite field with q elements is denoted Fq.

An introduction to Nichols algebra



Preliminaries Braided tensor categories Nichols algebras Classes of Nichols algebras

Groups

Theorem (Maschke)

Let G be a finite group. Then TFAE:

1 The characteristic of k does not divide |G|.
2 Every finite-dimensional representational of G completely

reducible.
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The tensor algebra

Graded vector space with a fixed grading V =
⊕
n∈N0

V n

Hilbert-Poincare series:

HV =
∑
n∈N0

dimV ntn ∈ Z[[t]] (1.1)

The graded dual of a locally finite graded vector space
V =

⊕
n∈N0

V n is

V ∗ =
⊕
n∈N0

V ∗n, V ∗n = homk(V n,k). (1.2)
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The tensor algebra

The product µ : T (V )⊗ T (V )→ T (V ) of the tensor algebra
is given by

µm,n : Tm(V )⊗ Tn(V ) ∼= Tm+n(V ) (1.3)

The enveloping algebra of a Lie algebra L:

U(L) := T (L)/ < xy − yx− [x, y] : x, y ∈ L > (1.4)

δ : V → T (V )⊗ T (V ), δ(v) = v ⊗ 1 + 1⊗ v extends to
∆ : T (V )→ T (V )⊗ T (V ). Then T (V ) becomes a Hopf
algebra.

δ : L→ U(L)⊗ U(L), δ(v) = v ⊗ 1 + 1⊗ v extends to
∆ : U(L)→ U(L)⊗ U(L), so that U(L) is a Hopf algebra.
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The symmetric algebra

S(V ) := T (V )/〈xy − yx : x, y ∈ V 〉 =
⊕
n>0

Sn(V )

Λ(V ) := T (V )/〈xy + yx : x, y ∈ V 〉 =
⊕
n>0

Λn(V )
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Coalgebras and Hopf algebras

D ∧ E := {c ∈ C : ∆(c) ∈ D ⊗ C + C ⊗ E}
Simple coalgebra

coradical

cosemisimple coalgebra: C = corad(C)

Pointed: corad(C) =
⊕
Vi, where Vi are subcoalgebras of C

with dimVi = 1

An introduction to Nichols algebra
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The tensor coalgebras

The tensor coalgebra T c(V ) is the vector space T (V ) with ∆
given by

∆(v1v2 . . . vn) =
∑
j∈In

v1 . . . vj ⊗ vj+1 . . . vn (1.5)
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Gelfand-Kirillov dimension

GK-dimension

If A is finitely generated,

GKdimA := lim
n→∞

logn dimAn (1.6)

If A is not finitely generated

GKdimA := sup{GKdimB|Bfinitely generated subalgebra of A}

GKdimT (V ) =∞, if dimV > 1

GKdimS(V ) = d, if dimV = d

Let A be finitely generated,then
GKdimA = 0⇔ dimA <∞.

GKdimU(L) = dimL, if L is a Lie algebra.

An introduction to Nichols algebra
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Braided vector spaces

Definition

We say (V, c) is a braided vector space if c ∈ GL(V ⊗ V ) satisfies

(c⊗ id)(id⊗ c)(c⊗ id) = (id⊗ c)(c⊗ id)(id⊗ c) (2.1)

An introduction to Nichols algebra
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Braided vector spaces

symmetry: c2 = id

Hecke type: char k = 0, k ∈ k×, q 6= −1.
(c− qid)(c+ id) = 0

Diagonal type: cq(xi ⊗ xj) = qijxj ⊗ xi
Triangular type: c(xi ⊗ xj) ∈ qijxj ⊗ xi + Vj−1 ⊗ V
Rack type

An introduction to Nichols algebra
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Braided vector spaces

Rack type

(kX, cq) is of rack type

cq(ex ⊗ ey) = qx,yexBy ⊗ ex x, y ∈ X (2.2)

such that

qx,yBzqy,z = qxBy,xBzqx,z, x, y, z ∈ X (2.3)

Let W be a vector space, q : X ×X → GL(W ) be a function.
V = kX ⊗W, exv := ex ⊗ v,

cq(exv ⊗ eyw) = exByqx,y(w)⊗ exv, x, y ∈ X, v,w ∈W. (2.4)
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Racks

Permutation rack

Let X be a non-empty set. Given σ ∈ SX , the associated
permutation rack (X,B) is defined by xB y = σ(y)

Group as a rack

A group G is a rack with xB y = xyx−1. If X ⊂ G is a conjugacy
class, then X is a subrack of G.

Twisted conjugacy rack

Let G be a group and T ∈ Aut(G). Let ⇀T be the action of G on
itself given by x ⇀T y = xyT (x−1), x, y ∈ G. Then the orbit
OG,Tx of x ∈ G by this action is a rack with operation

y BT z = yT (zy−1), y, z ∈ OG,ux (2.5)

The rack (OG,Tx ) is called a twisted conjugacy rack.
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Racks

Affine rack

Let A be an abelian group and T ∈ Aut(A). We define operation
B by

xB y = (1− T )x+ Ty, x, y ∈ A. (2.6)

Then (A, T ) is a rack, denoted Aff(A, T ).
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Racks

Simple rack

A finite rack X is simple if

it has at least 2 elements,

for any surjective morphism of racks π : X → Y , either π is
an isomorphism or Y has just one element.

An introduction to Nichols algebra
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Racks

Classification of simple racks

Let X be a finite simple rack with |X| elements. Then either of
the following holds:
1. |X| is divisible by at least 2 primes, In this case, there exist

a simple non-abelian group L

t ∈ N, and

θ ∈ AutL

such that X is a twisted conjugacy class of type (G,T ), where

G ∈ Lt and

T ∈ Aut(Lt) acts by

T (`1, . . . , `t) = (θ(`t), `1, . . . , `t−1), `1, . . . `t ∈ L. (2.7)

Furthermore, L and t are unique, and T only depends on its
conjugacy class in Out(Lt) = Aut(Lt)/Inn(Lt).
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Racks

2. |X| = pt where p is prime and t ∈ N. In this case, there exist 2
possibilities:

1 t = 1 and X ∼= Ip is the permutation rack of the cycle
(1, 2, . . . , p)

2 X is the affine rack Ftp, T , where T is the companion matrix
of a monic irreducible polynomial f ∈ Fp[X] of degree t,
different from X and X − 1.

An introduction to Nichols algebra
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Braided tensor categories

Braided monoidal category

A Braided monoidal category is a monoidal category C provided
with a natural isomorphism cX,Y : X ⊗ Y → Y ⊗X, called the
braiding, that is required to fulfill the hexagon axioms.

An introduction to Nichols algebra



Preliminaries Braided tensor categories Nichols algebras Classes of Nichols algebras

Yetter-Drinfeld modules

Let H be a Hopf algebra with bijective antipode S. Let G(H) be
the group of group-like elements.

Yetter-Drinfeld modules

A Yetter-Drinfeld module over H is a vector space V provided with

1 a structure of left H-module µ : H ⊗ V → V and

2 a structure of left H-comodule ρ : V → H ⊗ V such that

3 for all h ∈ H and v ∈ V , the following compatibility condition
holds:

ρ(h · v) = h(1)v(−1)S(h(3))⊗ h(2) · v(0) (2.8)

Thus we have the category H
HY D of Yetter-Drinfeld modules, with

morphisms being linear maps that preserve both the action and
coaction, i.e. both module maps and comodule maps.

An introduction to Nichols algebra
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Yetter-Drinfeld modules

Braiding of Yetter-Drinfeld modules

H
HY D is braided tensor category, with tensor product of modules
and comodules and braiding

cV,W (v ⊗ w) = v(−1) · w ⊗ v(0) V,W ∈ H
HY D , v ∈ V,w ∈W.

Here cV,W is bijective because S is so; indeed

c−1W,V (v ⊗ w) = w(0) ⊗ S−1(w(−1)) · v, V,W ∈ H
HY D , v ∈ V,w ∈W.
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Yetter-Drinfeld modules

Realization

Let (V, c) be a rigid braided space. Then there is a Hopf algebra

H(V ) such that V ∈H(V )
H(V ) YD and c = cV,V .

An introduction to Nichols algebra
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Yetter-Drinfeld modules

YD-pair

YD-pairs classify the V ∈HH YD with dimV = 1.

δ(k) = g ⊗ k, h · k = χ(h)k

principal realization

Let q = (qij) ∈ (k)I×I be a 2-cocycle and let V be the
corresponding braided vector space of diagonal type with respect
to a basis (xi)i∈I. A principal realization of (V, c) is a collection
(gi, χi)i∈I of YD-pairs such that qij = χj(gi) for all i, j ∈ I. But
there might be realizations different from here.

An introduction to Nichols algebra
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Yetter-Drinfeld modules

Yetter-Drinfeld modules over finite abelian groups

k is algebaically closed and Chark = 0, If H = kΓ, where Γ is
finite abelian, then every V ∈HH YD of dimension θ ∈ N is
determined by families (χi)i∈Iθ and (gi)i∈Iθ

An introduction to Nichols algebra
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Yetter-Drinfeld modules

YD-triple(realization of a 2-block)

Let (g, χ, η) be a YD-triple. Let Vg(χ, η) be a vector space with
basis (xi)i∈I2 , where the action and coaction are given by

h · x1 = χ(h)x1, h · x2 = χ(h)x2 + η(h)x1, (2.9)

δ(xi) = g ⊗ xi, h ∈ H. (2.10)

Then Vg(χ, η) ∈HH YD.

An introduction to Nichols algebra
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Yetter-Drinfeld modules

conjugacy class in a finite group

Let G be a finite group. Let O be a conjugacy class in G, pick
x ∈ O and (W,ρ) an irreducible representation of
Gx = {g ∈ G : gx = xg}. Let

M(O, ρ) = IndGGxρ = kG⊗kGx W (2.11)

Then M(O, ρ) ∈kG
kG YD

An introduction to Nichols algebra
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Hopf algebras in braided tensor categories

monoid(algebra) in a monoidal category C
comoid(coalgebra)in a monoidal category C
tensor product of 2 monoids in C
bialgebra in a monoidal category C

An introduction to Nichols algebra
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Bosonization

Bosonization

H is a Hopf algebra and R is a braided Hopf algebra, then R#H
is a Hopf algebra by

(r#h)(s#f) = r(h(1)c · s)#h(2)f, (3.1)

∆(r#h) = r(1)#(r(2))(−1)h(1) ⊗ (r(2))(0)#h(2) (3.2)

We call R#H the bosonization (Radford biproduct )of R .

An introduction to Nichols algebra
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Nichols algebras: definitions

Nichols algebra

The Nichols algebra B(V ) is the image of the map Ω.

Criterion using skew derivations

Let x ∈ Tn(V ), n ≥ 2. If ∂f (x) = 0 for all f ∈ V ∗, then
x ∈ Jn(V ).

An introduction to Nichols algebra
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Nichols algebras: definitions

Application to the pointed Hopf algebras

Let A be a pointed Hopf algebra and let grA be the graded
coalgebra associated to the coradical filtration. Then

grA ∼= R#kG(A) (3.3)

where R =
⊕
n≥0
Rn is a graded Hopf algebra in H

HYD. Set

V = R1. R is a post-Nichols algebra of V , while its subalgebra
generated by V is isomorphic to B(V ).

An introduction to Nichols algebra
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Nichols algebras: definitions

Problems

when is dimB(V ) <∞? For such V , classify its
finite-dimensional post-Nichols algebras.

When GKdim(B(V )) <∞?For such V , classify its finite
GK-dimensional post-Nichols algebras.

Conjecture

Assume Chark = 0 and H is semisimple. Let V ∈HH YD such that
dimB(V ) <∞. Then there is no finite-dimensional post-Nichols
algebras except B(V ) itself.
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Nichols algebras: techniques

direct computation

dual

twisting

discard

decomposition

An introduction to Nichols algebra
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Symmetries and Hecke type

Proposition 7

Let (V, c) be a braided vector space such that c is either a
symmetry or of Hecke type with label q /∈ G∞. Then
B(V ) ∼= T (V )/〈ker(c+ id)〉

An introduction to Nichols algebra
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Diagonal type

Theorem 5

Let V be a braided vector space of Cartan type with Cartan matrix
A. Then dimB(V ) <∞⇔ A is a finite Cartan matrix.

Conjecture

If GKdimB(V ) <∞, then its Weyl groupoid is finite.

Theorem 6

If either its Weyl groupoid is infinite and dimV = 2, or else is of
affine Cartan type, then GKdimB(V ) =∞.

An introduction to Nichols algebra



Preliminaries Braided tensor categories Nichols algebras Classes of Nichols algebras

Triangular type

Theorem 7

GKdimB(V (ε, `)) <∞ if and only if ` = 2 and ε ∈ {±1}. If this
happens, then GKdimB(V (ε, `)) = 2

Theorem 8

Let V be a braided vector space with braiding (83). Then
GKdimB(V ) <∞ if and only if the ghost is discrete and V is as
in Table1.

Theorem 9

Let V be a braided vector space with braiding (84). Then
GKdimB(V ) <∞ if and only if ε = −1 and either of the following
holds:

1 q12q21 = 1 and q22 = ±1; in this case GKdimB(V ) = 1

2 q22 = −1 = q12q21;in this case GKdimB(V ) = 2.
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Triangular type

Let G be an abelian group and V ∈HH YD of dimension 3 but not
of diagonal type. Then GKdimB(V ) <∞ if and only if V has the
shape (83)(84).
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Rack type, infinite dimension

collapse

type C,D, F

kthulhu

Theorem 10

A rack X of type C,D or F collapses.

Question

Are the criteria of types C,D, F valid to finite GK-dimension?

An introduction to Nichols algebra
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Rack type, infinite dimension

OSmσ ,OAmσ
unipotent(semisimple) conjugacy class in a Chevalley or
Steinberg group.

sporadic simple group different from the Moster M

Question

Are there cocycles for SP2n,q or SUm,q such that the
corresponding Nichols algebras are finite dimensional?

An introduction to Nichols algebra
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Rack type, finite dimension
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Thank you!
Email: zhangyongliang0@yeah.net
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